e-ISSN: In process
Jesús Estuardo Luján Irastorza.
1 Clínica de PRONATAL (Hospital Bité Médica). Prolongación Paseo de la Reforma 19, Santa Fe, Paseo de las Lomas, Cuajimalpa de Morelos, 01330 Ciudad de México, CDMX.
2 Clínica de Salud Femenina. Insurgentes Sur 03810 Ciudad de México, México.
3 Horizontes clínica de fertilidad. Calle Josefa Ortiz de Domínguez 538, Coaxustenco, 52140 Metepec, Méx., Metepec.
4 Clínica FertiFetal, Salud femenina/Reproductiva/Prenatal. Mayorazgo #130, alcaldía Benito Juárez, Hospital San Angel Inn Universidad, consultorio 744, 03339, Ciudad de México, CDMX.
Contact: Luján-Irastorza Jesús Estuardo. mail: jlujan05@hotmail.com. Prolongación Paseo de la Reforma 19, Santa Fe, Paseo de las Lomas, Cuajimalpa de Morelos, 01330 Ciudad de México, CDMX. Phone: +52 55 2129 2609.
DOI: 00.0000/tjor.2022.00.000.
Article History: Received 24 October 2022. Revised xx October 2022. Accepted xx October 2022. Available online xx October 2022.
Evaluation method | Detection rate (%) | False Positive Rate (%) |
---|---|---|
ME | 30 | 5 |
First trimester | ||
MA, TN | 75 - 80 | 5 |
MA, β-hCG AND PAPP-A | 60 - 70 | 5 |
MA, TN, β-hCG AND PAPP-A (combined test) | 85 - 95 | 5 |
Combined test, nasal bone or tricuspid flow or venous duct | 93 - 96 | 2.5 |
Table 1. Different methods for detection of trisomy 21.
MA: Maternal Age, NT: Nuchal Translucency, β-hCG: β-Human Chorionic Gonadotropin and PAPP-A: Plasma Protein A associated with pregnancy. Table modified from Kypros, 2011.
N | 73 | ||||
Age (years, Mean ± SD) | 36.3 ± 3.8 | ||||
Low | Intermediate | High | p | ||
---|---|---|---|---|---|
Trisomy 21 (Risk in combinated test) | 53.4% (39/73) | 30.1% (22/73) | 16.4% (12/73)* | ≤0.05 | |
Trisomy 21 (Positive in cffDNA) | 0% (0/39) | 0% (0/22) | 25% (3/12) | NA | |
Mean cffDNA fetal fraction (Mean±SD) | 11.3 ± 3.3 | 10.8 ± 4.4 | 8.3 ± 2.5 | >.0.05 | |
Confirmation by karyotype | - | - | 100% (3/3) | NA | |
Maternal and gestational characteristics | |||||
Age (years, Mean±SD) | 36.7 ± 3.4 | 37 ± 4.3 | 34.9 ± 3.9 | >0.05 | |
Weight (kg, Mean±SD) | 61.2 ± 11.6 | 57.6 ± 7.6 | 61.5 ± 7.8 | >0.05 | |
Height (m, Mean±SD) | 1.64 ± 0.06 | 1.61 ± 0.06 | 1.61 ± 0.07 | >0.05 | |
Median BMI (kg/m2) | 23.6 ± 3.1 | 22.03 ± 0.8 | 22.6 ± 3.7 | >0.05 | |
Nulliparity | 35.8% (14/39) | 22.7% (5/22) | 8.3% (1/12) | >0.05 | |
Combined test (Gestation Week, Mean±SD) | 12.8 ± 2.4 | 13.2 ± 1.9 | 13.4 ± 1.3 | >0.05 | |
Prenatal screening and testing | NT (mm) | 1.7 ± 0.5 | 1.6 ± 0.52 | 2.2 ± 1.4** | ≤0.05 |
β-hCG (MoM) | 1.7 ± 1.5 | 1.8 ± 1.1 | 2.1 ± 1.3 | >0.05 | |
PAPP-A (MoM) | 0.8 ± 0.6 | 0.7 ± 0.5 | 0.6 ± 0.4 | >0.05 | |
Pregnancy and delivery outcome | |||||
Preeclampsia | - | - | 8.3% (1/12) | NA | |
FGR | 5.1% (2/39) | 4.5% (1/22) | - | >0.05 | |
Gestational age | 38.5 ± 1.5 | 38.5 ± 0.8 | 37.2 ± 2.1*** | ≤0.05 | |
Live birth | 100% (39/39) | 81.8% (18/22) | 75% (9/12) | >0.05 | |
PB<34 wk | - | 4.5% (1/22) | 0 | NA | |
Induced abortion | - | - | 25% (3/12) | NA | |
PL | - | 9.09% (2/22) | - | NA | |
Obito | - | 9.09% (2/22) | - | NA | |
Birth weight | 3010.1 ± 358.3 | 2972.8 ± 318.3 | 2853 ± 749.3**** | ≤0.05 | |
Birth Size | 48.8 ± 1.9 | 48.8 ± 2.1 | 47.3 ± 2.2 | >0.05 | |
APGAR 1m | 8.8 ± 0.4 | 9 | 8.6 ± 0.5 | >0.05 | |
APGAR 5m | 9.5 ± 0.5 | 9.5 ± 0.5 | 9.6 ± 0.5 | >0.05 |
Table 2. Patient and gestational characteristics in the entire cohort and low, intermediate and high-risk groups.
*Significant difference when comparing HR-T21 vs LR-T21 and IR-T21 (p≤0.05, Student's T), **Significant difference when comparing HR-T21 vs LR-T21 and IR-T21 (p≤0.05, T of Student), *** Significant difference when comparing HR-T21 vs LR-T21 and IR-T21 (p≤0.05, Student's T), **** Significant difference when comparing HR-T21 vs LR-T21 and IR-T21 (p≤0.05, Student's T).
Graphic 1. Cal≤10%, Calcifications ≤10%, IC≤10: Ischemic Changes ≤10%, ASCV: Atrophic Small Chorionic Villus, CDV: Congested Dilated Vessels, AH: Acute Hemorrhage, Hema: Hematoma, CA: Chorioangioma, EE: Extravasation of Erythrocytes, SE: Stromal Edema and CU: Umbilical Cord. p≤0.05, Chi2.
[1] C. Díaz, E. Yokoyama and V. Del Castillo, "Genomics of Down Syndrome", Acta Pediatrica Mexicana, pp. 289-296, 2016.
[2] M. Ribate, B. Puisac and F. Ramos, "Trisomía 13 (síndrome de Patau)", AEP Protocolos, Vols. ISSN 2171-8172, pp. 91-95, 2010.
[3] S. Capriglione, M. Filippini, S. Latella and S. Ettore, "First Trimester screening for Aneuploidy: May Combined Test and Fetal DNA Work Together?", The Journal of Maternal-Fetal and Neonatal Medicine, pp. 1-5, 2020.
[4] C. Oviedo, J. Hernandez and A. Ruiz, "Tamiz Prenatal de Aneuploidías en el Primer Trimestre: Auditoría a un Centro de Medicina Fetal con Laboratorio Especializado en México", Ginecología y Obstetricia de México, vol. 83, pp. 259-276, 2015.
[5] H. Kypros, «Screening for fetal aneuploidies at 11 to 13 weeks», Prenatal diagnosis, vol. 31, pp. 7-15, 2011.
[6] K. Gersak, M. Perme and D. Strah, "First Trimester Screening for Trisomy 21 by Maternal Age, Nuchal Translucency and Fetal Nasal Bone in Undelected Pregnancies", Genetics and Etiology of Down Syndrome, pp. 301-312, 2011.
[7] J. Bestwick and N. Wald, "Sequential Integrate Antenatal Screening for Downs Syndrome, Trisomy 18 and 13", Journal of Medical Screening, vol. 23, no. 3, pp. 116-123|, 2016.
[8] J. Bestwick, W. Huttly and N. Wald, "Detection of Trisomy 18 and Trisomy 13 Using First and Second Trimester Downs Syndrome Screening Markers", Journal of Medical Screening, vol. 20, no. 2, pp. 57-65, 2013.
[9] K. Spencer and K. Nicolaides, "A First Trimester Trisomy 13/Trisomy 18 Risk Algorithm Combining Fetal Nuchal Translucency Thickness, Maternal Serum Free B-hCG and PAPP-A", Prenatal Diagnosis, vol. 22, no. 10, pp. 877-879, 2002.
[10] A. Buczynska, I. Sidorkiewicz, A. Trochimiuk, S. Ławicki, A. Kretowski and A. Zbucka, "Novel Approaches to an Integrated Route for Trisomy 21 Evaluation", Biomolecules, vol. 11, no. 1328, pp. 1-17, 2021.
[11] R. Stokowsky, E. Wang, K. White, B. Annette, B. Jacobsson, H. Brar, M. Balanarasimha, D. Hollemon, A. Sparks and K. Nicolaides, "Clinical Performance of Non-Invasive Prenatal Testing (NIPT) Using Targeted Cell-Free DNA Analisys in Maternal Plasma Wiht Mocroarrays or Next Generation Sequencing (NGS) is Consistent Across Multiple Controlled Clinical Studes", Prenatal Diagnosis, vol. 35, no. 12, pp. 1243-1246, 2015.
[12] M. Schmid, P. Bogard, E. Bevilacqua, C. Hacker, S. Wang, J. Doshi, K. White, J. Kaplan, A. Sparks, J. Jani and R. Stokowski, "Prenatal Screening for 22q11.2 Deletion Using a Targeted Microarray-Based Cell-Free DNA Test", Fetal Diagnosis and Therapy, vol. 44, pp. 299-304, 2018.
[13] K. Jones, E. Wang, P. Bogard, K. Wiht, M. Schmid, R. Stokowski y H. Nicolaides, «Targeted Cell-Free DNA Analisy wiht Microarray Quantitation for Assessment of Fetal Sex Chromosome Aneuploidy Risk», Ultrasound in Obstetrics and Gynecology, vol. 51, nº 2, pp. 275-276, 2018.
[14] M. Hernandez, E. Ramirez, R. Melendez, L. Garduño and D. Mayen, "Prueba Prenatal no Invasiva /NIPT) en Sangre Materna a Través de Secuanciación Masiva Paralela (MPS). Experiencia Inicial en Mujeres Mexicanas u Revidión de la Bibliografía", Ginecología y Obstetricia de México, vol. 83, pp. 277-288, 2015.
[15] O. Pos, J. Budis and T. Szemes, "Recent Trends in Prenatal Genetics Screening and Test (Version 1; Peer Review: 2 Aproved)", F1000Research, vol. 8, no. F1000 Faculty Rev, pp. 1-10, 2019.
[16] M. Szilágyi, O. Pos, E. Márton, G. Buglyó, B. Soltész, U. Keseru, A. Penyige, T. Szemes and B. Nagy, "Circulating Cell-Free Nucleic Acid: Main Characteristics and Clinical Application", International Journal of Molecular Science, vol. 21, no. 6827, pp. 1-20, 2020.
[17] M. Allyse and M. Wick, "Noninvasive Prenatal Genetics Sceening Using Cell-Free DNA", Journal of the American Medical Association, vol. 320, no. 6, pp. 591-592, 2018.
[18] D. Bianchi and R. Chiu, "Sequencing of Circulating Cells-free DNA During Pregnancy", The New England Journal of Medicine, vol. 379, no. 5, pp. 464-473, 2018.
[19] C. Miltoft, L. Rode, J. Bundgaard, P. Johansen and A. Tabor, "Cell-free Fetal DNA in the Early and Late First Trimester", Fetal Diagnosis and Therapy, pp. 1-9, 2019.
[20] M. Blitz, B. Rochelson and N. Vohra, "Maternal Serum Analytes as Predictors of Fetal Growth Restriction with Diferent Degrees of Placental Vascular Dysfunction", Clinics in Laboratory Medicine, vol. 36, pp. 353-368, 2016.
[21] V. Schiffer, C. Borghans, J. Bons, C. Severens, S. van Kuijk, M. Spaanderman and S. Al-Nasiry, "The association between first trimester placental biomarkers and placentallesions of maternal vascular malperfusion", Placenta, vol. 103, pp. 206-213, 2021.
[22] L. Dugoff, "First- and Second-Trimester Maternal Serum Markers for Aneuploidy and Adverse Obstetric Outcomes", Obstetrics and Gynecology, vol. 115, no. 5, pp. 1052-1061, 2010.
[23] E. Litwińska, M. Litwińska, P. Oszukowski, K. Szaflik and P. Kaczmarek, "Combined screening for early and late pre-eclampsia and intrauterine growth restriction by maternal history, uterine artery Doppler, mean arterial pressure and biochemical markers", Advances in Clinical and Experimental Medicine, vol. 26, no. 3, pp. 439-448, 2017.
[24] A. Borrell, E. Casals, A. Fortuny, A. Gonce, I. Mercade, A. Seres, C. Gonzalez, V. Cararach and J. Vanrell, "Cribado de Trisomía 21 en el Primer Trimestre Mediante Test Combinado de Bioquímica y Ecografia. Estudio Prospectivo de Intervención", Progresos de Obstetricia y Ginecología, vol. 48, no. 5, pp. 223-230, 2005.
[25] P. Antsaklis, Z. Fasoulakis, M. Michail and E. Kontomanolis, "Association of Low Maternal Pregnancy-associated Plasma Protein A with Adverse Perinatal Outcome", Cureus, vol. 11, no. 6, p. e4912, 2019.
[26] A. López, M. Jódar, O. García, M. Lorente, R. López and J. Martínez, "Asociación de Nivel Bajo de PAPP-A en Primer Trimestre con Resultados Obstétricos Adversos".
[27] H. Park, S. Kim, Y. Jung, S. Shim, J. Kim, Y. Cho, A. Faria, M. Zanello, K. Lee and D. Cha, "Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy", BMC Pregnancy Childbirth, vol. 14, no. 35, pp. 1-11, 2014.
[28] B. Mikat, Zeller A, A. Scherag, K. Drommelschmidt, R. Kimming and M. Schmind, "βhCG and PAPP-A in First Trimester: Predictive Factors for Preeclampsia?", Hypertension in Pregnancy, vol. 31, no. 261, pp. 261-267, 2012.
[29] M. Rivas, X. Gonzalez and H. Guevara, "Proteína plasmática A asociada al embarazo y fracción β de gonadotrofina coriónica humana en pacientes con resultados materno y perinatal adverso. Informe preliminar", Revista de Obstetricia y Ginecología de Venezuela, vol. 74, no. 4, pp. 222-228, 2014.
[30] A. Karahasanovic, S. Sørensen and L. Nilas, "First Trimester Pregnancy-Associated Plasma Protein A and Human Chorionic Gonadotropin-Betain Early and Late Preeclampsia", Clinical Chemistry and Laboratory Medicine, vol. 52, no. 4, pp. 521-525, 2014.
[31] W. ornwattanakrilert,, R. Sekararithi, C. Wanapirak, S. Sirichotiyakul, F. Tongprasert, K. Srisupundit, S. Luewan and T. Tongsong, "First-trimester Serum Biomarker Screening for Fetal Down Syndrome as a Predictor of Preterm Delivery: a Population-Based Study," The Journal of Maternal-Fetal & Neonatal Medicine, pp. 1-8, 2020.
[32] M. Falco, J. Sivanathan, A. Laoreti, B. Thilaganathan and A. Khalil, "Placental histopathology associated with pre-eclampsia:systematic review and meta-analysis," Ultrasound in Obstetrics & Gynecology, vol. 50, no. 3, pp. 295-301, 2017.
[33] N. Voicu, R. Bohîlţea, S. Berceanu, C. Busuioc, G. Roşu, . Ş. Paitici, A. Istrate, C. Berceanu and D. Diţescu, "Evaluation of placental vascularization in thrombophilia and intrauterine growth restriction (IUGR)," Romanian Journal of Morphology and embryology, vol. 61, no. 2, pp. 465-476, 2020.
[34] N. Vedmedovska, D. Rezeberga, U. Teibe, I. Melderis and G. Donders, "Pathology in Fetal Growth Restriction," European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 155, pp. 36-40, 2011.
[35] G. Ogge, T. Chaiworapongsa,, R. Romero, Y. Hussein, J. Kusanovic,, L. Yeo, C. Jai and S. Hassan, "Pacental Lesions Associated With Maternal Underperfusion are More Frequent in Early-Onset Than in Late-Onset Preeclampsia," Journal of Perinatal Medicine, vol. 36, no. 6, pp. 641-652, 2011.
[36] L. Devisme, B. Merlot, A. Ego, V. Houfflin, P. Deruelle y D. Subtil, «A case-control study of placental lesions associated with pre-eclampsia,» International Journal of Gynecology & Obstetrics, vol. 120, nº 2, pp. 165-168, 2013.
[37] A. Sarafzadeh, M. Jamalou and Z. Roustaei, "Placental Pathologies in the Preterm Labors," Sarem Journal of Reproductive Medicine., vol. 3, no. 1, pp. 59-64, 2018.
[38] M. Azizi, M. Rejaei, Z. Pezeshkpour, M. Reza, E. Kazemi, S. Zare, S. Hekmatimoghaddam and M. Sarebanhassanabadi, "Correlation Between Pathology of Placenta and Preterm Labor: A Case-Control Study," Journal of Biology and Today's World, vol. 3, no. 11, pp. 238-241, 2014.
[39] H. Odendaal, "Strong Association Between Placental Pathology and second-Trimester Miscarriage," Archives of Obstetrics and Gynaecology , vol. 2, no. 3, pp. 51-56, 2021.
[40] G. Lema, A. Mremi, P. Amsi, Z. Pyuza and J. Alloyce, "Placental Pathology and Maternal Factors Associated with Stillbirth: An Institutional Based Case-Control Study in Northern Tanzania," PLOS ONE, vol. 15, no. 12, pp. e0243455 (1-14), 2020.